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Quantifying the Potential Impacts of Fuel
Treatments on Wildfire Suppression Costs
Matthew P. Thompson, Nicole M. Vaillant, Jessica R. Haas,
Krista M. Gebert, and Keith D. Stockmann

Modeling the impacts and effects of hazardous fuel reduction treatments is a pressing issue within the wildfire
management community. Prospective evaluation of fuel treatment effectiveness allows for comparison of
alternative treatment strategies in terms of socioeconomic and ecological impacts and facilitates analysis of
tradeoffs across land-management objectives. Studies have yet to rigorously examine potential impacts to fire
suppression expenditures associated with prior hazardous fuel reduction treatments. Such information would be
helpful for federal land-management agencies struggling to contain escalating wildfire management costs. In this
article we establish a methodology for estimating potential reductions in wildfire suppression costs. Our approach
pairs wildfire simulation outputs with a regression cost model and quantifies the influence of fuel treatments
on distributions of wildfire sizes and suppression costs. Our case study focuses on a landscape within the
Deschutes National Forest in central Oregon that was selected to receive funding under the auspices of the
Collaborative Forest Landscape Restoration Program. Results suggest substantial reductions in distributions of
wildfire size and suppression cost on a per fire basis. Furthermore, because fewer ignitions become large fires
on the treated landscape, distributions of annual area burned and annual suppression costs also shift downward
because of fuel treatments. Results are contingent on four key factors: large-scale implementation of fuel
treatments across the landscape, assumed treatment effectiveness over the duration of the analysis period,
accuracy of wildfire and cost models, and accuracy of projected changes to fire behavior fuel models resulting
from fuel treatments. We discuss strengths and limitations of the modeling approach and offer suggestions for
future improvements and applications.
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M odeling the impacts and effects of
hazardous fuel reduction treat-
ments is a pressing issue within

the wildfire management community. Pro-
spective evaluation of fuel treatments allows
for comparison of alternative treatment
strategies in terms of socioeconomic and
ecological impacts and facilitates analysis

of tradeoffs across land-management objec-
tives (Stockmann et al. 2010). Although
much attention has been focused on assess-
ing how fuel treatments affect expected loss
to highly valued resources and assets (e.g.,
Ager et al. 2007), some have also suggested
benefits from fuel treatments in terms of
avoided suppression costs (Snider et al.

2006). However, studies have yet to rigor-
ously examine potential impacts to fire sup-
pression expenditures associated with prior
hazardous fuel reduction treatments.

In this article, we present a methodol-
ogy for estimating potential reductions in
wildfire suppression costs. Our approach
pairs wildfire simulation outputs with a re-
gression cost model and quantifies the influ-
ence of fuel treatments on distributions of
wildfire sizes and suppression costs. Our
framework is based on emerging applica-
tions of wildfire risk science to inform deci-
sionmaking (Calkin et al. 2011a) and adopts
wildfire cost modeling methods illustrated
by Thompson et al. (2012a). Estimates of
suppression cost reductions can ultimately
be compared with treatment costs within a
cost benefit framework.

Motivation for this study stems from
four important sources. First, escalating
USDA Forest Service wildfire management
costs have and may continue to result in re-
duced budgets and potentially disruptive
within-season borrowing to nonfire pro-
grams, challenging the ability of the agency
to meet societal needs and maintain forest
health (Thompson et al. 2012a). Recent leg-
islative action has attempted to address this
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fiscal problem, in part, by targeting proac-
tive reduction of hazardous fuels. Title IV
(Forest Landscape Restoration) of the Om-
nibus Public Land Management Act of 2009
established the US Forest Service Collabor-
ative Forest Landscape Restoration Pro-
gram, which funds up to 50% of fuel reduc-
tion and ecological restoration treatment
implementation and monitoring costs for
competitively selected proposals. Language
in the act specifically calls for use of funds to
“facilitate the reduction of wildfire manage-
ment costs, including through reestablishing
natural fire regimes and reducing the risk of
uncharacteristic wildfire” and that selected
projects will “affect wildfire activity and
management costs.” Thus, there is signifi-
cant interest in understanding how fuel
treatments may provide opportunities to re-
duce future suppression costs.

Second, suppression costs are known to
be positively and highly correlated with fire
sizes and area burned. Calkin et al. (2005)
reviewed trends in area burned and suppres-
sion expenditures across 1970–2002 and
reported a positive correlation coefficient of
0.76. Liang et al. (2008) examined 16 po-
tential nonmanagerial factors (representing
fire size and shape, private properties, public
land attributes, forest and fuel conditions,
and geographic settings) and found that
only fire size and private land had strong
effects on suppression costs. All other things
being equal, suppression costs were shown
to increase monotonically with fire size.
Thus, there is reason to believe that treating
fuels to reduce fire sizes and annual area
burned could lead to reduced suppression
costs (although it should be said that reduc-
ing fire sizes may be neither desirable nor
possible on many landscapes).

Third, modeling efforts and postfire
analyses suggest that fuel treatments can sig-
nificantly affect fire spread and final fire size
(Stratton 2004, Finney 2007, Hudak et al.
2011). The composition and spatial config-
uration of fuels influence fire size distribu-
tions, which may be altered by modifying
fuel availability and flammability (Cui and
Perera 2008). Cochrane et al. (2012) exam-
ined the effects of actual landscape fuel treat-
ments on likely fire spread and final fire size,
focusing on 14 large wildfires that interacted
with extant fuel treatments. In that study,
the authors used the FARSITE fire model-
ing system (Finney 2004) to simulate ob-
served wildfire progression and spread rates
and, in addition, to simulate fire growth that
would have occurrence in the absence of the

fuel treatments. Effects of fuel treatments on
fire size were variable, although net size re-
ductions caused by treatments were identi-
fied for 11 of the 14 wildfires, with a mean
of 13.2% reduction in size. Collins et al.
(2011) evaluated an actual landscape fuel
treatment project on the Tahoe National
Forest, and simulation results indicated sub-
stantial reductions in burn probabilities
within and beyond treatment areas. Reduc-
tions in burn probabilities and fire sizes
caused by fuel treatment were also reported
by Ager et al. (2010), who found that in-
creasing fuel treatment area decreased aver-
age wildfire size and intensity (see also
Moghaddas et al. 2010). A critical variable
influencing the effect of landscape fuel treat-
ments on fire spread is the spatial extent of
treatments (Collins et al. 2010).

Finally, fuel treatments can also lead to
reductions in final fire size by providing

opportunities for enhanced suppression
(Moghaddas and Craggs 2007, Graham et
al. 2009, Hudak et al. 2011). In fact, in
some cases fuel treatments were shown to be
largely ineffective without suppression activ-
ities (Syphard et al. 2011). Reinhardt et al.
(2008) caution, however, that under ex-
treme weather conditions that often drive
large fire events these mitigating effects may
be overwhelmed.

Methods

Framework
The evaluation of potential cost im-

pacts involves first modeling how treatments
will impact fire behavior, and, in turn, mod-
eling how altered fire behavior may impact
suppression costs. Figure 1 provides a con-
ceptual framework detailing how the bio-
physical and socioeconomic context, treat-

Figure 1. Conceptual framework for evaluating potential cost impacts of fuel treatments (our
approach is highlighted in gray).

Management and Policy Implications

Controlling escalating wildfire management costs is a critical issue for federal land-management agencies.
Fire and fuels managers can implement the modeling techniques illustrated here to better understand the
likely financial impacts, in terms of changed suppression costs, of proposed fuel treatments intended to
restrict fire growth, or enhance containment. Modeling results can also serve to help inform broader
allocation and prioritization processes to see where fuel investments might be most effective, by comparing
alternative treatment scenarios. Effective treatment implementation can result in reduced large fire sizes
as well as reduced occurrence of large fires, which, in turn, can lead to suppression cost savings. Expected
suppression savings (if applicable) can be compared with fuel treatment costs for financial cost– benefit
analysis. Auxiliary analyses can consider how changes in fire behavior impact other socioeconomic and
ecological objectives. Implementation of fuel treatments may, therefore, help achieve land and resource
management goals, while simultaneously lessening future suppression cost impacts.
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ment objectives, and treatment impacts
relate to our modeling approach. The likeli-
hood, extent, and intensity of fire, along
with the density and spatial pattern of values
at risk, jointly influence treatment strategies
and design objectives (Calkin et al. 2011a).
In some contexts, this may entail creating
areas of low-fire intensity and hazard, and
fire sizes might actually increase as part of
restoring historical fire regimes. In other
contexts, treatment strategies are oriented
more toward resource protection and the in-
hibition of fire growth across the landscape.

Multiple mechanisms exist by which
fuel treatments could affect suppression
costs. Reduced intensity will in many con-
texts lead to reductions in burn severity
(Martinson and Omi 2008, Wimberly et al.
2009), enabling opportunities for resource
benefit and moderated suppression re-
sponses. These changes in wildfire manage-
ment could in turn lead to suppression of
cost reductions. However, Gebert and Black
(2012) recently found that less aggressive
protection strategies may ultimately lead to
costs on par with or higher than more ag-
gressive strategies, because of longer dura-
tions and increased acreages burned.

Another mechanism is the alternation
of fire size distributions, which, to reiterate,
are a major determinant of suppression
costs. Here, we focus on fire size as a primary
variable affecting suppression cost estimates
(Figure 1). The foundation of our approach
is the coupling of two peer-reviewed models
used by the Forest Service and other federal
land-management agencies: FSim (Finney
et al. 2011a), a spatially explicit large fire
occurrence and spread model, and a large
fire cost model (Gebert et al. 2007). The use
of a fire growth simulation model approach
allows us to directly model disruptions in
fire spread and subsequent impacts to fire
size. Therefore, in our approach, all else be-
ing equal, treatments resulting in reduced
fire spread will tend to decrease fire size, in
turn reducing fire cost.

The effects of altered suppression strat-
egies and containment likelihood are not
well accounted for in our modeling ap-
proach. The FSim modeling system includes
an algorithm that models the likelihood of
containment largely as a function of fire
weather. The algorithm is based on an earlier
model presented by Finney et al. (2009) that
also incorporates information on fuel type
and fire spread, and so it is conceivable that
future modeling efforts could account for
modified containment likelihood as a func-

tion of reduced rate of spread. However,
even this adjustment would be statistical,
not mechanistic, and so it would not be pos-
sible to specifically assess potential impacts
from alternative suppression tactics. Relying
on expert judgment to identify where direct
attack might be effective coupled with sen-
sitivity analysis could explore a possible
range of cost savings beyond those presented
with our modeling approach.

Wildfire Simulation Modeling
The large fire simulation model, FSim

(Finney et al. 2011a), relates to a family of
fire modeling systems including FARSITE
(Finney 2004), FlamMap (Finney 2006),
and FSPro (Finney et al. 2011b). FSim uses
the minimum travel time (MTT) fire spread
algorithm (Finney 2002), producing fire
growth by searching for the fastest travel
paths from burning to unburned nodes.
FSim combines a logistic model for ignition
probability (Andrews et al. 2003) given en-

ergy release component (ERC) values, sim-
ulated temporal ERC streams with the same
statistical properties as historical ERC
streams, random draws of wind speed and
direction given local weather history, fuel
moisture conditions as a function of ERC,
the MTT algorithm, and the containment
algorithm, to simulate fire occurrence and
spread for thousands of simulated “fire sea-
sons.” The ensemble modeling method ac-
counts for uncertainty surrounding multiple
input variables and enables estimation of po-
tential wildfire growth under weather condi-
tions that may not have been observed in the
limited historical record. A primary input to
FSim is a landscape file containing spatial
fuels and terrain information (elevation,
slope, aspect, surface fuel model, canopy
cover, canopy height, canopy base height,
and canopy bulk density). Historical fire and
weather from a representative remote auto-
mated weather station (RAWS) is also used

Figure 2. Map of DCFP study area, with project areas and treatment units highlighted.
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for time series analysis to generate synthetic
weather streams and to parameterize the
large fire occurrence model.

FSim produces raster format calcula-
tions of burn probability and flame length
(in this case, 30-m pixel resolution), as well
as vector format layers containing simulated
wildfire perimeter and final fire size. Burn
probability is an estimate of the likelihood
of a pixel burning from a random ignition
within the pixel or spread from adjacent pix-
els and is quantified as the number of times
a given pixel burns divided by the number
of simulated fire seasons. Validation efforts
showed that FSim was able to successfully
replicate historic patterns of fire occurrence,
fire size distributions, and burn probabilities
(Finney et al. 2011a). FSim outputs cur-
rently form the basis for large wildfire poten-
tial for the Fire Program Analysis System
(National Interagency Fire Center 2012)
and the Hazardous Fuels Priority Alloca-
tion System. Recent applications of FSim
include national-scale wildfire risk assess-
ment (Thompson et al. 2011), forest-level
risk assessment (Thompson et al. 2012b),
analysis of municipal watershed exposure
to wildfire on the Beaverhead-Deerlodge
National Forest (Scott et al. 2012), and re-
lated analyses on the Bridger-Teton Na-
tional Forest and the Grand Teton National
Park (M. Thompson, pers. comm., Rocky
Mountain Research Station, March 2012).

Suppression Cost Modeling
The large fire cost model (Gebert et al.

2007) is a regression model built from his-
torical fire cost data that estimates per acre

and final fire costs as a function of total fire
size, fire environment variables (e.g., slope,
aspect, and fire weather), and values at risk
(e.g., distance to town and total housing
value within 20 mi). For the purposes of the
fire cost model, large fires are defined as fires
greater than 300 ac in size. The cost model is
embedded within the Wildland Fire Deci-
sion Support System for cost containment
guidance and is used as a performance mea-
sure to identify extreme high-cost fires
(Calkin et al. 2011b). We used the cost
model to estimate suppression costs for all
simulated large fires that grew to at least
300 ac.

Fuel Treatment Cost Impact Modeling
Simulating the occurrence and growth

of wildfires across the current and hypothet-
ically treated landscapes enables evaluation
of changes in fire behavior and, therefore,
treatment impacts. Fire size potential is
jointly driven by the spatial continuity of
fuels and temporal opportunities for spread.
To compare simulation results with and
without fuel treatments, we set up FSim
runs to use identical ignition locations and
weather conditions for both scenarios. Thus,
weather conditions are controlled for and
changes to modeled final fire size are attrib-
uted to treatment effects (although there is
some stochasticity induced via the modeling
of spotting and containment). Differences
in estimated suppression costs (a function
of changed fire sizes) reflect expected sup-
pression cost differences due to treatment.
With this approach, fuel treatments can
also change suppression costs if the fuel

type (brush, grass, timber, etc.) at ignition is
changed, in those relatively rare circum-
stances where ignitions occur in treated
areas.

The following basic steps of the overall
analysis procedure are outlined. Data needs
include an up-to-date map of landscape fu-
els, spatially delineated fuel treatments, and
projected fuel conditions after treatment:

1. Obtain or create up-to-date fuels data to
represent existing conditions.

2. Obtain historical fire occurrence data,
and identify appropriate RAWS for fire
weather data.

3. Design and spatially lay out prospective
fuel treatments.

4. Modify existing conditions fuels data to
reflect fuel treatments.

5. Generate FSim wildfire simulation model
outputs with and without fuel treatments.

6. Aggregate and feed variables output from
FSim into the regression cost model to
estimate the expected suppression cost
for each simulated fire.

7. Compare expected suppression costs
with and without fuel treatments, across
fires and across simulated fire seasons.

Case Study: Deschutes
Collaborative Forest Project

The Deschutes Skyline Project, com-
monly referred to as the Deschutes Collab-
orative Forest Project (DCFP), was one of
the first 10 projects approved and funded
under the Collaborative Forest Landscape
Restoration Program and was selected as a

Table 1. Modeled changes in burnable fire behavior fuel models (FBFM40; Scott and Burgan 2005) as a result of ongoing and planned
fuel treatments.

EC fire behavior fuel model PT fire behavior fuel model

Block Code Name Block Code Name

101 GR1 Short, sparse dry climate grass 101 GR1 Short, sparse dry climate grass
104 GR4 Moderate load, dry climate grass 101 GR1 Short, sparse dry climate grass
122 GS2 Moderate load, dry climate grass–shrub 121 GS1 Low load, dry climate grass–shrub
141 SH1 Low load, dry climate shrub 141 SH1 Low load, dry climate shrub
142 SH2 Moderate load, dry climate shrub 141 SH1 Low load, dry climate shrub
145 SH5 High load, dry climate shrub 141 SH1 Low load, dry climate shrub
161 TU1 Low load, dry climate timber–grass–shrub 161 TU1 Low load, dry climate timber–grass–shrub
162 TU2 Moderate load, humid climate timber–shrub 161 TU1 Low load, dry climate timber–grass–shrub
181 TL1 Low load, compact conifer litter 181 TL1 Low load, compact conifer litter
121 GS1 Low load, dry climate grass–shrub 183 TL3 Moderate load, conifer litter
165 TU5 Very high load, dry climate timber–shrub 183 TL3 Moderate load, conifer litter
183 TL3 Moderate load, conifer litter 183 TL3 Moderate load, conifer litter
185 TL5 High load, conifer liter 183 TL3 Moderate load, conifer litter
187 TL7 Large downed logs 183 TL3 Moderate load, conifer litter
188 TL8 Long-needle litter 183 TL3 Moderate load, conifer litter
184 TL4 Small downed logs 184 TL4 Small downed logs

FBFM40, Fire Behavior Fuel Model.
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pilot study for modeling the impacts of fuel
treatments on expected suppression costs.
Figure 2 provides a map of the analysis land-
scape (516,962 ac), as well as the DCFP
project area, most of which is located within
the Deschutes National Forest (DNF;
145,000 ac total; 112,000 ac of which is
US Forest Service), in west central Oregon.
Information presented here regarding
DCFP landscape conditions and treatment
plans can all be found in the original pro-
posal document (USDA Forest Service
2012).

The DCFP has identified a total of
seven areas that will be analyzed under proj-
ect-level National Environmental Protec-
tion Act (NEPA) guidelines (alphabetically):
Drink, Glaze Meadow, Popper, Sisters Area
Fuels Reduction (SAFR), Ursus, West Bend,
and West Tumbull. Identified in Figure 1

are the locations of all proposed fuel treat-
ments within the DCFP. No treatments
are planned within the Addition or Skyline
areas, some of which is private land. The
degree of implementation varies across proj-
ect areas—as of this writing, in some areas
fuels have already been or are currently being
treated, and in other areas teams are in vari-
ous stages of planning.

Most of the DCFP landscape is com-
prised of ponderosa pine (Pinus ponderosa)
and dry mixed conifer forest types, charac-
terized by frequent, low-severity fire. The
western portions of the landscape, however,
include wet mixed conifer forest types, with
mixed severity and return intervals between
35 and 150 years. A multistakeholder col-
laborative effort identified the DCFP land-
scape as a priority landscape for restoration
and wildfire hazard and risk reduction. The

broad treatment goals are restoring forest
ecosystems, promoting resiliency, and pro-
tecting highly valued resources and assets.

Fuel treatment objectives vary accord-
ing to forest type. In dry forests, efforts are
aimed at restoring natural fire regimes and
creating trajectories to late-successional
stages, by reducing stand density, reducing
ladder fuels, and favoring large fire-resilient
trees. Areas prioritized for treatment are typ-
ified by closed-canopy and midsuccessional
stand conditions (Glaze Meadow, SAFR,
and West Tumbull). In wet forest types on
the western edges of the landscape, strategi-
cally placed treatments may inhibit fire
spread driven by westerly winds (Drink,
Popper, and Ursus). Thinning from below
(commercial and noncommercial) is the pri-
mary vegetation treatment, with surface fu-
els treated through a combination of hand
piling and burning, mowing, and prescribed
fire.

DNF staff provided data on vegetation
and fuel layers reflecting existing conditions
(EC), as well as treatment polygons and
posttreatment (PT) fuel conditions. Table 1
details expected changes in fire behavior fuel
models (Scott and Burgan 2005). Fire be-
havior fuel models are more of an expression
of expected fire behavior than a true repre-
sentation of the fuelbed, and thus modeled
changes reflect expectations of future fire
behavior based on local expert opinion and
past fire observation. Table 2 provides addi-
tional details on expected changes to canopy
characteristics (crown cover, crown base
height, and canopy bulk density).

In total, 66,808 ac (�46% of the
DCFP landscape) are projected to receive
treatment,1 during the planning period
from 2010 to 2019. For modeling purposes,
we used a single landscape to reflect the
entire suite of fuel treatments; i.e., the PT
modeling results represent the cumulative
effect of all treatments on completion of
implementation, rather than unique simu-
lation results capturing individual treatment
effects as they are implemented. The ex-
pected lifespan of treatments is 10 years,
which should temper concerns over this
modeling assumption. We set up FSim to
simulate fire occurrence and growth for a
total of 10,000 simulated fire seasons and
included a buffer around the study area of
width ranging from 2 to 3 mi to account for
off-site ignitions that could affect onsite
burn probabilities. To generate weather files
for FSim, we used the Colgate RAWS with
data from 1990 to 2010 and used fire history

Table 2. Modeled changes in canopy characteristics as a result of ongoing and planned
fuel treatments.

Canopy cover (%) Canopy base height (ft) Canopy bulk density (kg/m3)

EC PT EC PT EC PT

40–45 40 1–5 10 0.00–0.07 No change
46–50 42 6–10 12 0.08–0.10 0.07
51–60 45 11–15 18 0.11–0.15 0.09
61–70 50 16–20 No change 0.16–0.20 0.10
71–75 55 20� No change 0.21–0.30 0.11
76–80 60 — — 0.31� 0.12
81–90 65 — — — —
91–00 70 — — — —

Table 3. DNF fire history across FY 2000–2011, US Forest Service costs only (exclusive
of Department of Interior), for fires >300 ac, compiled from the NIFMID and the FFIS.

FY Fire name Size (ac) Cost per acre ($) Fire cost ($)

2000 Newberry II 552 2,367 1,306,522
2001 Crane Complex 650 3,621 2,353,443
2003 Davis Fire 21,135 382 8,066,561
2003 Booth 79,734 384 30,587,468
2003 Link 3,590 1,877 6,738,609
2003 18 Fire 3,800 464 1,763,364
2005 Cave Fire 652 389 253,343
2006 Lake George 5,550 1,866 10,357,841
2007 Woodside Ranch 589 1,203 708,281
2007 GW 7,357 917 6,744,132
2008 Royce Butte 381 4,142 1,578,028
2008 Snow Creek 389 6,461 2,513,437
2009 Blackbutte II 711 4,558 3,240,404
2011 Shadow Lake 10,000 1,016 10,161,226
Summary statistics

Mean — 9,649 2,117 6,169,476
Median — 2,151 1,534 2,876,921
Minimum — 381 382 253,343
25th percentile — 604 577 1,624,362
75th percentile — 6,905 3,307 7,735,954
Maximum — 79,734 6,461 30,587,468

FY, fiscal year; NIFMID, National Interagency Fire Management Integrated Database; FFIS, Foundation Financial Information
System.
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information for all fires on the DNF over the
same period.

Because of the large spatial extent of the
treatments and the combination of mechan-
ical treatments with surface and activity fuel
treatment, we hypothesized reductions in
fire sizes and expected suppression costs
would occur within the study area. We fur-
ther hypothesized that treatment effects
would be more prominent for those igni-
tions occurring closer to treated areas.
Therefore, we present modeling results for
fires that ignited within three overlapping
analysis areas of increasing size (within
treated areas, within a 2-mi buffer of treated
areas, and across the entire study area).

Results

Comparison of Historical and
Simulated Results

Table 3 presents historic large fire data
across fiscal years2 2000–2011, for the en-
tire DNF. Note this is a different time pe-
riod from that used to parameterize fire size
distributions FSim, in large part to enable
comparisons of suppression cost in addition
to fire size. Fire occurrence data are com-
piled from the National Interagency Fire
Management Integrated Database and fi-
nancial data from the Foundation Financial
Information System. The 14 large fires in
the historic record evince substantial vari-
ability, with fire size ranging from 381 to
79,734 ac; cost per acre ranging from $382
to 6,461/ac; and cost per fire ranging from
$253,343 to 30,587,468.

Simulation results generally agree with
the range of historical observations. Across
the entire study area the mean and median
fire sizes are 9,541 and 2,955 ac, respec-
tively, compared with historical values of
9,649 and 2,151 ac, respectively. The simu-
lated mean and median per fire suppression
cost are $9,003,597 and 5,081,574, respec-
tively. These modeled fire costs are higher
than historical observations, a result not al-
together unexpected given the proximity of
the study area to the communities of Sisters
and Bend (Figure 2) and the positive influ-
ence of housing value on suppression costs
within the regression cost model. Historical
fire cost data by contrast includes fires that
ignited in more remote, less developed areas
and in wilderness areas, where suppression
costs are generally lower.

Fuel Treatment Effects on Burn
Probability, Fire Size, and
Suppression Cost

Figure 3 presents simulated annual
burn probabilities across the ECs and the PT
landscapes. Reductions in burn probability
are evident, especially in areas receiving fuel
treatments (Figure 2), which stem from re-
ductions in rate of spread and their final fire
size. Burn probabilities do increase in some
areas, although the magnitude of this in-
crease is quite small relative to reductions
elsewhere on the landscape. Causes for in-
creased burn probability are not directly ob-
vious, although given the stochasticity of fire
spotting and containment within the wild-

fire model these results are not altogether
unexpected. Furthermore, fuel treatments
may in some circumstances increase surface
fire spread rates because of enhanced under-
story growth and increased wind speeds
(Hudak et al. 2011), although the occur-
rence of increased burn probabilities within
treated areas is quite rare across the study
area.

Table 4 presents summary statistics re-
garding percent reductions in fire size, cost
per acre, and cost per fire resulting from
treatment. With respect to size, reductions
are most prominent within treated areas
although off-site effects are discernible.
Within treated areas, the mean and median

Figure 3. Reduction in landscape burn probabilities between the ECs and PT conditions, for
the DCFP study area plus. Areas shaded in blue indicate reduced likelihood of burning due
to fuel treatments. Areas of negative reduction correspond to areas of increased burn
probability, which are rare on the landscape. Reductions in burn probability are evident
within and beyond treatment locations.
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fire sizes decrease by 17.08 and 22.24%, re-
spectively, and within the 2-mi buffer mean
and median fire sizes decrease by 11.30
and 14.97%, respectively. Treatment effects
dampen as the analysis area increases because
of the increasing proportion of fires that do
not interact with treatments.

Table 4 also indicates increasing cost
per acre with decreasing fire size, consistent
with both the cost regression model and his-
torical Deschutes data, where smaller fires
tend to cost more per acre. Overall per fire
costs decrease, however, because the effects
of the reductions in fire sizes overwhelm the
effects of increases in per acre costs. Reduc-
tions in cost per fire also lessen as the analysis
area increases and are generally comparable
in magnitude with reductions in fire size.
Within treated areas, the mean and median
fire costs decrease by 15.86 and 17.58%, re-
spectively, and within the 2-mi buffer mean
and median fire sizes decrease by 10.78 and
10.63%, respectively.

Annual Area Burned and Annual
Suppression Costs

Beyond per fire results, it is important
to aggregate individual simulated fire results
into unique fire seasons on an annualized
basis. This approach captures both those fire
seasons in which no large fires occur and
those fire seasons in which multiple large
fires occur. In the historical record, the DNF
experienced at least one large fire during 11
of 14 years. The occurrence of large fires
within the study area is likely to be less, be-
cause the study area comprises only a frac-
tion of the acreage of the entire forest. Of
a total of 10,000 unique fire seasons simu-
lated, the EC landscape had the following
number of seasons with at least one large
fire: 3,620 (entire study area), 2,179 (2-mi
buffer), and 1,371 (treated areas). Similarly,
the PT landscape experienced 3,463 (entire
study area), 1,926 (2-mi buffer), and 1,072
(treated areas) seasons with at least one large
fire. Because we used the exact same set of
simulated ignitions on the untreated (EC)
and treated (PT) landscapes, the difference
in the number of large fires reflects the effect
of fuel treatments on limiting the growth of
ignitions to below the 300-ac “large fire”
threshold.

Tables 5–7 present results for annual
area burned and annual suppression costs.
Results in Table 5 are conditional on at least
one large fire occurring, i.e., exclusive of
simulated seasons in which a large fire did
not ignite within the given geographic

scope. Percent reductions in mean and me-
dian annual area burned and annual sup-
pression costs are roughly on par with per
fire reductions (Table 4) and suggest sub-
stantial treatment effects, especially within
treated areas. Table 6, by contrast, presents
unconditional results across all 10,000 sim-
ulated seasons. The 25th, 50th (median),
and 75th percentiles are not presented be-
cause they are all equal to zero. The annual
area burned and suppression costs increase
as the size of the analysis area increases, sim-
ply because more fires are included in the

sample. Percent reductions, however, de-
crease, because a smaller fraction of fires in-
teract with treatments, consistent with re-
sults presented in Tables 4 and 5. For fires
igniting within treated areas, mean annual
area burned and suppression costs drop by
36.25 and 35.30%, respectively, after treat-
ment. Table 7 presents additional summary
statistics of annualized results for just the
2-mi buffer analysis area. Area burned and
suppression cost increase steeply going from
the 90th to the 95th to the 100th (maxi-
mum) percentiles, suggestive of a long right

Table 4. Percent reductions to fire size, cost per acre, and cost per fire resulting from
treatment, across all large fires igniting within three overlapping landscape areas of
increasing size (within treated areas, within a 2-mi buffer of treated areas, and across
the entire study area).

Treated areas 2-mi buffer Entire study area

Size
Mean 17.08% 11.30% 4.68%
Median 22.24% 14.97% 5.55%
Minimum 0.66% 0.66% 0.74%
25th percentile 12.12% 5.97% 2.78%
75th percentile 23.13% 13.20% 7.06%
Maximum 12.84% 3.78% 0.58%

Cost per acre
Mean �2.24% �0.60% 0.53%
Median 0.26% 0.28% 1.00%
Minimum �6.73% �0.43% �0.17%
25th percentile �0.30% 1.40% 1.22%
75th percentile �3.18% �1.04% 0.35%
Maximum �1.74% 0.00% 0.00%

Cost per fire
Mean 15.86% 10.78% 6.71%
Median 17.58% 10.63% 5.21%
Minimum �0.48% 0.25% �0.78%
25th percentile 18.60% 11.30% 5.05%

75th percentile 20.57% 12.91% 7.04%
Maximum 5.64% 1.06% 2.72%

Treatment effects dampen as the area increases, because of the increasing proportion of fires that do not interact with treatments.

Table 5. Percent reductions to annual area burned and annual suppression costs
resulting from treatment, across fires igniting within three overlapping landscape areas
of increasing size (within treated areas, within a 2-mi buffer of treated areas, and
across the entire study area).

Treated areas 2-mi buffer Entire study area

Annual area burned (conditional)
Mean 18.47% 13.30% 7.05%
Median 21.96% 12.04% 8.91%
Minimum 1.24% 0.66% 0.74%
25th percentile 9.91% 5.58% 3.01%
75th percentile 23.90% 13.57% 8.06%
Maximum 26.71% 21.82% 9.12%

Annual suppression costs (conditional)
Mean 17.26% 12.80% 9.03%
Median 16.96% 11.80% 8.24%
Minimum 0.00% 0.25% 0.25%
25th percentile 21.16% 11.14% 7.28%
75th percentile 22.62% 15.56% 8.33%
Maximum 27.33% 19.73% 19.73%

Results are conditional, meaning they are aggregated from only those simulated fire seasons with at least one large fire.
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tail and potential for rare but highly damag-
ing and expensive fire seasons.

Discussion and Concluding
Remarks

Our analysis shows that planned fuel
treatments within the DCFP study area are
likely to reduce the number of large fires, fire
sizes, and large fire suppression costs. In a
broader sense, our analysis presents a pos-
sible method for estimating the impacts of
fuel treatments on financial risk. Our analyt-
ical approach adopted wildfire simulation
and burn probability modeling techniques,
which are increasingly used to inform fire
and fuels management decisions (Miller et
al. 2008) and which are essential for estimat-
ing the likelihood that a given treatment will
interact with a wildfire during its effective
lifespan. Auxiliary analyses can couple wild-
fire simulation outputs with maps of values
at risk to consider possible exposure and ef-
fects, to contemplate the broader socioeco-
nomic and ecological impacts of fuel treat-
ments, and to compare these impacts with
the costs of fuel treatments. Sensitivity and
scenario analyses can be used to examine a
range of potential cost impacts, given uncer-
tainty surrounding both future fire occur-
rence and cost modeling. One opportunity
for integration with other decision support
tools lies with use of the ArcFuels treatment
planning and risk analysis system (Ager et al.
2011). ArcFuels integrates fire behavior
models and spatial data within a geographic
information system framework and can
greatly facilitate development and testing of
fuel treatment scenarios at stand and land-
scape scales. Use of ArcFuels could, there-
fore, help in the design of treatment strate-
gies for further analysis and simulation
modeling. The tools and approaches defined
here could inform treatment design and
strategy development across land-manage-
ment agencies interested in better managing
suppression costs.

It is recognized that the modeling ap-
proaches shown here entail several assump-

tions and limitations. In particular, four
critical factors condition our results. First,
nearly 50% of the DCFP project area will
receive treatment. We might not expect sim-
ilar impacts to fire sizes and costs on land-
scapes with lower treatment levels. In such
cases strategic placement of treatments to
interrupt predominant fire spread pathways
(Finney 2007) can enhance the impact of
fuel treatments on burn probabilities, if con-
sistent with broader landscape objectives.
Second, modeling all treatments as occur-
ring at once through time may not ade-
quately capture nonlinear relationships or
temporal dynamics and could overestimate
treatment longevity. For our purposes it is
assumed that treatments are sufficiently in-
tensive to remain effective over the duration
of the analysis period and/or that mainte-
nance treatments are applied as necessary.
Third, results are dependent on the wildfire
simulation and regression cost models used.
Limitations of the FSim model relate to re-
liance on submodels with potential for prop-
agated error, use of coarse weather data, and
potential for crown fire underprediction bias
(Cruz and Alexander 2010). Issues of scale
also can be a limitation to consider, where as
the size of the analysis area decreases so does
the population of historical large fires avail-
able to parameterize the model. Questions
remain as to the optimal spatial scope of

analysis for capturing historical fire variabil-
ity, as well as the optimal spatial scope for
capturing fire spread potential from remote
ignitions. Validation efforts, however, have
shown that FSim can replicate fire size dis-
tributions well for the continental United
States (Finney et al. 2011a), as well as within
this particular study area. Limitations of the
regression cost model include a reliance on
limited spatial fire information (e.g., igni-
tion location versus fire perimeter), limited
valuation of threatened nonmarket re-
sources, and a limited ability to handle fire
complexes. Fourth, changes in wildfire out-
puts are largely driven by projected changes
in fire behavior fuel models. As is the case
with many modeling systems, astute users
could manipulate parameters and input vari-
ables to achieve desired outputs. If projected
changes to fire behavior fuel models are op-
timistic, in a sense, reductions in fire sizes
may be overstated.

Results of this demonstration should
therefore be viewed through a critical lens,
and future applications should focus on
careful model calibration and validation.
Particularly critical is the accuracy of pro-
jected fuel conditions before and after fuel
treatments; Stratton (2009) provides guid-
ance for critiquing and calibrating input
fuels data (see also Scott et al. 2012). Vali-
dating simulated fire sizes and fire costs is

Table 6. Mean annual area burned and suppression costs across all 10,000 simulated fire seasons, across fires igniting within three
overlapping landscape areas of increasing size (within treated areas, within a 2-mi buffer of treated areas, and across the entire
study area).

Treated areas 2-mi buffer Entire study area

EC PT Reduction EC PT Reduction EC PT Reduction

Area burned (ac) 1,315 838 36.25% 2,494 1,911 23.37% 5,398 4,799 11.08%
Suppression cost ($) 1,610,806 1,042,147 35.30% 2,848,653 2,195,551 22.93% 5,093,335 4,432,626 12.97%

EC, existing conditions; PT, posttreatment landscapes.

Table 7. Annual area burned and annual suppression costs across all 10,000 simulated
fire seasons, for ignitions occurring within a 2-mi buffer of the treated area.

EC PT Reduction

Annual area burned (ac)
Mean 2,494 1,911 23.37%
90th percentile 4,398 2,960 32.69%
95th percentile 14,561 10,926 24.96%
Maximum 160,491 125,479 21.82%

Annual suppression costs ($)
Mean 2,848,653 2,195,551 22.93%
90th percentile 7,673,437 5,547,975 27.70%
95th percentile 17,714,613 13,501,278 23.78%
Maximum 188,746,521 151,510,191 19.73%

The 25th, 50th (median), and 75th percentiles are not presented because they are all equal to zero.
EC, existing conditions; PT, posttreatment landscapes.
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admittedly challenging, in large part because
of a limited historical record. Seeking to
closely replicate observed fire size distribu-
tions may be overfitting to an incomplete
distribution and, furthermore, would ignore
possibilities for statistically rare conditions
not observed under which fires can grow be-
yond historical maxima. Comparing simu-
lated and historical suppression costs is par-
ticularly difficult, because cost structures
vary not only across biophysical settings and
associated fire growth potential, but also ac-
cording to the location and density of socio-
economic values.

Potential limitations of our modeling
approach extend to real-world concerns as
well. As Reinhardt et al. (2008) succinctly
state, the only certain way to reduce suppres-
sion expenditures is to make a decision to
spend less money, independent of potential
changes to fire behavior from extant fuels
treatments. Strong sociopolitical pressures
and misaligned incentive structures could
still encourage aggressive suppression irre-
spective of other considerations (Donovan
and Brown 2005, Donovan et al. 2011). Ad-
ditionally, for various reasons such as budget
uncertainty and realities of NEPA planning,
the treatment schedule designed during the
proposal may differ from what is eventually
implemented. Modeling future treatments
necessarily involves some best guesses by lo-
cal experts regarding location, extent, and
intensity of treatment.

At present, this modeling technique
only addresses cost impacts from changes to
final fire size, not fire intensity. In earlier
versions of the suppression cost model fire
intensity was included as a dependent vari-
able and was found to have a significant
positive correlation with cost per acre. Ques-
tions over the reliability of subjective assess-
ments of intensity, however, ultimately led
to the removal of fire intensity from the
model. Thus, modeling the cost impacts of
reduced fire intensity will likely require the
incorporation of local expertise and profes-
sional judgment coupled with scenario anal-
ysis. Here, FSim outputs, which include spa-
tially resolved estimates of fire intensity (via
flame length), should prove useful. Penman
et al. (2011) and Plucinski et al. (2012) pro-
vide useful illustrations of reliance on expert
judgment in the wildfire management con-
text. Information on how suppression tac-
tics might change with the presence of fuel-
breaks could also inform future estimates
of reduced suppression costs (Syphard et al.
2011).

Future work could seek to expand on
the suppression cost modeling methods in
a number of ways. Currently, the regression
cost model is being updated to reflect a
broader suite of spatial explanatory vari-
ables, which may enable refined suppres-
sion expenditure estimates in the future
(Thompson et al. 2012a). It may also be pos-
sible to integrate information on suppres-
sion strategies and tactics into the regression
model (e.g., Gebert and Black 2012) or to
elicit expert judgment to capture how
changes in suppression would likely affect
fire size and cost. Future improvements
could include the integration of structured
processes for eliciting expert judgment to
capture changes in future suppression tactics
and to estimate impacts of reduced fire in-
tensity on likely cost. Upcoming changes
to the wildfire modeling system include use
of finer-scale weather information, which
could enable refined estimates of localized
fire behavior and spread, and improved
modeling of wildfire containment (M.
Finney, pers. comm., Rocky Mountain Re-
search Station, March 2012).

In summary, we believe we have identi-
fied a novel and unique methodology that
should inform fuel treatment design and im-
plementation and that ultimately will facili-
tate the reduction of wildfire management
costs. Despite identified limitations, model-
ing results can provide useful information
about the relative magnitude and direction
of change resulting from strategic fuels man-
agement. Recommended applications in-
clude fuel treatment design where impacting
fire sizes and suppression costs are explicit
management objectives and analyses of proj-
ects moving forward under the Collabora-
tive Forest Landscape Restoration Program
and the National Cohesive Wildland Fire
Strategy.

Endnotes
1. The initial proposal called for 52,000 treat-

ment ac, but as treatment implementation
continues this projection has increased.

2. In the United States a fiscal year extends
from October 1 through September 30. The
fiscal year largely overlaps with typical fire
seasons for most regions of the country.
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